New sensitizers for Photodynamic Therapy (PDT)

in collaboration with Prof. S. Visentin (Biotecnology), Dr. R. Canaparo (Pharmacy)

Context
The photodynamic therapy offers innovative non-invasive therapeutic opportunities for the treatment of surface cancer. It is based on the generation of singlet oxygen by photocatalysis (using laser light) applied on a dye, which accumulation is selective for the cancer cells.

Methods
Photochemical characterization of dyes by UV-Vis, static, time-resolved and anisotropy fluorescence spectroscopy. The interactions are studied from the kinetic point of view, through stopped-flow, to determine the kinetic and thermodynamic constants.

Scientific goals
Synthesis of polymethinic dyes, study of their photochemical properties and of their interaction with model proteins.

Dyes and Intermediates for the modification/functionailization of nanomaterials (silica NPs, CNT, gold nanoparticles, halloysite, MOF) for diagnostics and drug delivery

in collaboration with Prof. G. Martra (Dip. Chimica), Prof. S. Visentin (Biotecnology), Dr. V. Mussi (CNR Roma)

Scientific goals
Synthesis of the dyes. Functionalization of the nanomaterials and study of their interaction with proteins and/or drugs.

Methods
Photochemical characterization of dyes by UV-Vis, static, time-resolved and anisotropy fluorescence spectroscopy. Characterization of the nanomaterial/dye complexes through SEM, TEM, TGA, AFM, Raman (collaboration with CNR Roma), FT-IR.

Drug-Protein and Protein-Protein Interaction

in collaboration with Prof. S. Visentin (Biotecnology)

Scientific goals.
Study of the interaction by UV-Vis, static, time-resolved and anisotropy fluorescence spectroscopy.

Context.
Determination of the interaction constants between drugs and transport proteins or proteins involved in particular pathologies. Study of the protein-protein interaction to investigate cellular pathways.

Methods.
Stopped-flow kinetic study to determine kinetic constants for the association/dissociation reactions.

Synthesis of Fluorinated Gemini Surfactants for Gene Therapy

in collaboration with Prof. E. Fisicaro (Univ. Parma)

Scientific goals.
Synthesis of fluorinated gemini surfactants able to transfer efficiently a gene into a cell. Starting from an active compound of the surfactant series, the research aim is to find better active compounds, through structural modifications.

Context.
Cationic surfactants are prone to transfer genes to a cell. It is possible to modulate the gemini surfactant characteristics by modifying the spacer and the chain length.

Methods.
Synthesis of the surfactants in anhydrous conditions. Structural characterization through UV, IR, NMR, Mass spectrometry. Biological tests are performed at the University of Parma.